包含标签:hdd 的文章
-
Crimson-boi[7] 创意填空题
题目背景 本题来源于南京外国语学校2022年数学校选最后一道填空.可能是抄来的 题面 平面上有n个点, 其中任意三点均不在同一条直线上, 且任意三点构成的三角形的内角度数都是正整数, 求n的最大值. 先想再看提示哦 提示 直觉告诉我们, 最后的构…… -
Crimson-boi[6] 行列式分块
题目背景 本题来源于M.Artin Algebra 练习1-M1; 原书本章主要简要回顾了线性代数的内容, 此题即为一道行列式的题目. 题面 M为2n\times2n的方阵, 可以写成\begin{bmatrix} A&B\\ C&D \end{bmatrix}的形式; 其中A, B, C, D均为n\times n的方阵,并满足A可逆, AC=…… -
狂暴野蛮人[1] 一阶线性非常系数微分方程
文明一思考, 野蛮就发笑 本系列着重使用暴力的手法去解决标答巧妙但很难想到的题, 内容多半为物理(因为物理本身就极其暴力), 可能会夹带少量数学; 暴力解法纯粹图一乐, 该学习的还是要学, 切勿因"一招鲜"而放弃思考! 1 (2022-2-27) 先置知识 求解一阶线性非常系数…… -
HHS craft 2021 summer 圆满结束
上期HHS Craft 这个假期hhs craft再次完成预定任务, 可喜可贺! 成果一览: ~铁塔高级收集(使用carpet自动合成)~ 原始小型村民交易所(含mending与frost walker) 主世界伪和平(采用村庄加载) (地狱部分) (主世界部分) 主世界刷沙机 小型小黑塔 重点工程:沙漠刷怪塔…… -
Crimson boy[5] 笑了
题目背景: 来自中等数学2021.4数学奥林匹克问题, 可能是这个栏目下有史以来最水的题, 以下解法非标答(因为没买No.5), 或许略显繁琐 题目: 设实数x_i(i=1,2,..,n)使得\sum_{i=1}^{n}x_i=0且\sum_{i=1}^{n}x_i^2=n(n-1). 证明: |\sum_{i=1}^nx_i^3|\leq n(n-1)(n-2) …… -
Crimson boi can u solve it?[4] 搞笑求积
题目背景: 在t教师课后, w同学提出此问题. 在现场的我由于过于弱智, 没能及时想出思路. 在回家途中准备展开时, 却无意中发现了"绝妙"的突破口. :i 题目: 求\prod_{i=1}^{n}(1+cos\frac{2i\pi}{n}) 先想再看提示哦 提示: 切比雪夫多项式 …… -
Crimson Boy 3 组合几何
By HDD from Hexo 时隔多月, CB终于归来. 这次的题目虽然不难, 但解答过程可谓是一波三折: A在告诉我题目后, 我自然地尝试用复数解. 可惜由于我太过弱智, 将积的模记成了模相乘再开根, 导致与正确题解失之交臂, 并报告了A复数行不通. A随后告诉我B用复数解决, 我…… -
[indiscipline][1]琴生不等式小题一道
由于笔者太弱智,这道题想了两天无任何思路.但在上完夏建国课后,突然思如泉涌,在10分钟内完成,金与大家分享一下我的歪门邪道 题面 已知x_i>0(i=1,2,...,n),x_1+x_2+...+x_n\geq x_1x_2...x_n(n\geq2),且1\leq\alpha\leq n 证明:\frac{x_1^\alpha+x_2^\alpha+...+x_n^\a…… -
[Crimson boy can you solve it?] [1] 简易琴生不等式两则
简易琴生不等式两则,能使你在繁重的中考学习压力下锻炼思维,获得成功的快感!!! 1.x,y,z\in \mathbb{R}^+,xyz=1,证明: \frac{x^3}{(1+y)(1+z)}+\frac{y^3}{(1+x)(1+z)}+\frac{z^3}{(1+x)(1+y)}\geq\frac{3}{4} 2.\alpha>\beta>0.a_1,a_2,...a_n\in\mathbb{R}^+,证明: (…… -
解析之美--曲线系
注意:理解曲线系最重要的要点是将某方程F(x,y)=0中的多项式F(x,y)当做关于一点坐标的函数.当一点(m,n)在F(x,y)=0的图像上时,便满足F(m,n)=0 1.先从一道不能算曲线系精髓的直线系题目说起 如图AD平分∠BAC,AD上任取一点E,使得BE交边CD于F,CE交边BD于G 求证AD平分∠GAE ……