搜索内容

题&解
  • Crimson-boi[12] 脑筋急转弯
    题&解

    Crimson-boi[12] 脑筋急转弯

    题目背景 贴吧范畴论帅哥问的一道题, 题目还算基础, 不过确实很容易伪证, 是名副其实的脑筋急转弯. 题面 对一个拓扑空间X, 定义集合S为稠密集当且仅当\text{Cl}(S)=X, R为无处稠密集当且仅当X-\text{Cl}(R)为稠密集. 定义集合A的边界\text{Bd}(A)=\text{Cl}(A)\cap\te……
    HDD 2023年5月27日
  • Crimson-boi[11] 创新高考题
    题&解

    Crimson-boi[11] 创新高考题

    题目背景 总有人喜欢在高考数学中嚷嚷"仿射变换", 于是一道纯正射影几何高考"创新题"应运而生(其实还顺便测试一下QuickLaTex). 题面 如上图, , , 共线, , , 共线, , , 共线, 且, , 不共线, , , 不共线. (1) 若与不是同一平面, 求证与的交点, 与的交点, 与的交点共线.……
    HDD 2023年4月23日
  • Orange Boy Can You Solve It Out? Ep. 53 - Gaokao Special 2
    OBCYSIO

    Orange Boy Can You Solve It Out? Ep. 53 - Gaokao Special 2

    思考题 which is an adaptation from a popular problem. The source problem is very popular. IDK if this adaptation has been made or not. Adaptation There are N people indexed from 1 to N in a room. Each of them is given a hat of a random color. The t……
    XGN 2023年3月15日
  • Orange Boy Can You Solve It Out? Ep. 52 - Gaokao Special 1
    OBCYSIO

    Orange Boy Can You Solve It Out? Ep. 52 - Gaokao Special 1

    Finally some geometry! Maybe very easy though. Currently I am undergoing the College Entrance Exam(GK) so I don't have many ideas for Competitive Programming problems. This problem is inspired by some math problem in GK Simulation. Of course, this ……
    XGN 2023年3月15日
  • Orange Boy Can You Solve It Out? Ep. 51
    OBCYSIO

    Orange Boy Can You Solve It Out? Ep. 51

    思考题 of Div2B-C Elevator Welcome back to OBCYSIO! Orange Boy has been promoted to LGM boy so this series is in an awkward situation. This problem is very easy. Consider an elevator with a max speed of v_m m/s and an acceleration of a m/s^2. When ……
    XGN 2022年10月30日
  • Crimson-boi[10] 我是大专生 ;( ;( ;(
    题&解

    Crimson-boi[10] 我是大专生 ;( ;( ;(

    题目背景 庆祝Crimson Boy提前一步进入大学殿堂, 特此准备一道来自他所在的大学的隔壁敌对大学的微积分题目! 题面 \forall x\in[1,+\infty), f(x)>0, f''(x)\leq0且\lim\limits_{x\rightarrow+\infty}f(x)=+\infty. 计算\lim\limits_{s\rightarrow0^+}\sum\limits_{n=……
    HDD 2022年9月6日
  • 狂暴野蛮人[2] pqr爆解对称三元不等式
    技术

    狂暴野蛮人[2] pqr爆解对称三元不等式

    文明一思考, 野蛮就发笑 没想到这个系列能出第二期, 并且第二期就是数学, 占到了目前总期数的一半! 不过, 本期只有一个象征性的题目 (毕竟类似的题要多少有多少), 其主要内容还是介绍暴力的手法. 不过这手法真的有用吗? 好像目前竞赛考的都是n元或加了怪异条件的……
    HDD 2022年8月23日
  • Crimson-boi[9] 我用拉格朗日, 可不可以做不等式
    题&解

    Crimson-boi[9] 我用拉格朗日, 可不可以做不等式

    题目背景 贴吧偷来的. 话说本系列题目怎么越来越弱智了 题面 a,b,c>0, a^2+b^2+c^2=2, 且\max\lbrace a,b,c\rbrace\leq1, 求\frac{b^2-a^2}c+\frac{c^2-b^2}a+\frac{a^2-c^2}b的最大值. 先想再看提示哦 提示 首先, 通常的取等条件a=b=c会使……
    HDD 2022年8月19日
  • Crimson-boi[8] 布尔代数
    题&解

    Crimson-boi[8] 布尔代数

    题目背景 从复旦出版的 数理逻辑-证明及其限度 上抄的. 觉得还算有意思的一道布尔代数, 可以出给信息与未来的小朋友. 题面 (1) 将真值F与T看作0与1, 并认为0<1, 若对\forall i, f(x_1,\cdots,x_{i-1},0,x_{i+1},\cdots,x_n)\leq f(x_1,\cdots,x_{i-1},1,x_{i+1},\c……
    HDD 2022年7月17日
  • Crimson-boi[7] 创意填空题
    题&解

    Crimson-boi[7] 创意填空题

    题目背景 本题来源于南京外国语学校2022年数学校选最后一道填空.可能是抄来的 题面 平面上有n个点, 其中任意三点均不在同一条直线上, 且任意三点构成的三角形的内角度数都是正整数, 求n的最大值. 先想再看提示哦 提示 直觉告诉我们, 最后的构……
    HDD 2022年5月30日