最新文章
-
[indiscipline][1]琴生不等式小题一道
由于笔者太弱智,这道题想了两天无任何思路.但在上完夏建国课后,突然思如泉涌,在10分钟内完成,金与大家分享一下我的歪门邪道 题面 已知x_i>0(i=1,2,...,n),x_1+x_2+...+x_n\geq x_1x_2...x_n(n\geq2),且1\leq\alpha\leq n 证明:\frac{x_1^\alpha+x_2^\alpha+...+x_n^\a…… -
[小小开发] python缓存
最近在写API,因为算力和调用别的API也有限制(大嘘,所以进行一个cache是很有必要的 本来以为这是一个非常简单的事情,就没有想到要调用轮子,最后发现实现的非常不优雅,, 惊讶的发现网上竟然有轮子 使用方式非常简单 安装包: pip3 install werkzeug 初始化: from…… -
[LSS Short] Dream
This is part of the upcoming LSS 5 by XGN. ONE When we wake up from a dream, are we in reality or another dream? White hall, I garb in the purest white clothes I could find, waiting for the "other one" to arrive. Deep breathing, in and out, I a…… -
[神必函数]#2.耐克函数
如题。 nike(x)=(\sqrt{x}-1)^2 nikebottom(x)=(\sqrt{\frac{5}{3}x}-\sqrt{2})^2-1 另外,nike(x) 会渐近于 y=x 比对勾函数好看得不知到哪里去了 GeoGebra -
[神必函数]#1.三角函数的错误用法
用反三角和三角函数构造方波/锯齿波/三角波 甚至具有调节“方度”功能无级变速 令“方度”常数为s (0 \lt s \le 1) square(x)=\frac{cos(x)}{\sqrt{2-s-sin(x)^2}} triangular(x)=\frac{sin^{-1}(s \cdot sin(x))}{s} sawtooth(x)=\frac{tan^{-1}(s \cdot tan(x))}{s} fak…… -
[LSS Short] Dandelion
This story is part of LSS4 by XGN. Dandelion,dandelion,where will you fly? Will you take my heart away? "I am feeling not good today" It's late night, and Ookami the werewolf girl still could't fall asleep. "Damn the math test.. It must be the test…… -
[Crimson boy can you solve it?] [1] 简易琴生不等式两则
简易琴生不等式两则,能使你在繁重的中考学习压力下锻炼思维,获得成功的快感!!! 1.x,y,z\in \mathbb{R}^+,xyz=1,证明: \frac{x^3}{(1+y)(1+z)}+\frac{y^3}{(1+x)(1+z)}+\frac{z^3}{(1+x)(1+y)}\geq\frac{3}{4} 2.\alpha>\beta>0.a_1,a_2,...a_n\in\mathbb{R}^+,证明: (…… -
解析之美--曲线系
注意:理解曲线系最重要的要点是将某方程F(x,y)=0中的多项式F(x,y)当做关于一点坐标的函数.当一点(m,n)在F(x,y)=0的图像上时,便满足F(m,n)=0 1.先从一道不能算曲线系精髓的直线系题目说起 如图AD平分∠BAC,AD上任取一点E,使得BE交边CD于F,CE交边BD于G 求证AD平分∠GAE …… -
Orange Boy Can You Solve It Out? Ep. 40
Simple 思考题 Ninja Try to find any of three integers X,Y,Z in a given integer array A of length N so that X+Y=Z. Example Input: A={1,2,3} Output: X=1,Y=2,Z=3 Input: A={0} Output: X=0,Y=0,Z=0 Input: A={1,9,2,6,0,8,1,7} Output: X=1,Y=8,Z=9 Input: A=…… -
Orange Boy Can You Solve It Out? Ep. 39
思考题 greedy? SMM Have you ever played Super Mario Maker (2)? There's an interesting mode called Endless Challenge. Let's look at a simplified version: The game contains N levels. The player plays from level 1 to level N in order. In Level i, ther……