crimboi[16] 搞笑群论

题目背景

人见人爱的代数小题 :] 惊人的是竟然在Hungerford II.2.8.9才出现, 还标了名字 😮

题面

A^ * is a normal subgroup of A, B^ * is a normal subgroup of B. Prove that:

(i) A^ *(A\cap B^ *) is a normal subgroup of A^ *(A\cap B)

(ii) B^ *(A^ *\cap B) is a normal subgroup of B^ *(A\cap B)

(iii) A^ *(A\cap B)/A^ *(A\cap B^ *)\cong B^ *(A\cap B)/B^ *(A^ *\cap B)




先想再看提示哦

提示

Actually (i)(ii)(iii) can be proved together by constructing an epimorphism f:A^ *(A\cap B)(B^ *(A\cap B)\text{ resp.})\rightarrow (A\cap B)/D with kernel A^ *(A\cap B^ *)(B^ *(A^ *\cap B)\text{ resp.})for some mysterious D :i (it's easy to guess using symmetry)




愿你无需看标答

标答

给了提示应该很简单了, 注意不要(也不需要)乱用AC!

版权声明:
作者:HDD
链接:https://blog.hellholestudios.top/archives/1208
来源:Hell Hole Studios Blog
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>
文章目录
关闭
目 录