crimboi[16] 搞笑群论
题目背景
人见人爱的代数小题 :] 惊人的是竟然在Hungerford II.2.8.9才出现, 还标了名字 😮
题面
A^ * is a normal subgroup of A, B^ * is a normal subgroup of B. Prove that:
(i) A^ *(A\cap B^ *) is a normal subgroup of A^ *(A\cap B)
(ii) B^ *(A^ *\cap B) is a normal subgroup of B^ *(A\cap B)
(iii) A^ *(A\cap B)/A^ *(A\cap B^ *)\cong B^ *(A\cap B)/B^ *(A^ *\cap B)
先想再看提示哦
提示
Actually (i)(ii)(iii) can be proved together by constructing an epimorphism f:A^ *(A\cap B)(B^ *(A\cap B)\text{ resp.})\rightarrow (A\cap B)/D with kernel A^ *(A\cap B^ *)(B^ *(A^ *\cap B)\text{ resp.})for some mysterious D :i (it's easy to guess using symmetry)
愿你无需看标答
标答
给了提示应该很简单了, 注意不要(也不需要)乱用AC!
版权声明:
作者:HDD
链接:https://blog.hellholestudios.top/archives/1208
来源:Hell Hole Studios Blog
文章版权归作者所有,未经允许请勿转载。
共有 0 条评论